

Simon Fleischli-Zantkuijl Area & Product Manager

Insect pathogens as biological control agents by Andermatt Biocontrol

- Insect pathogens: an overview
- Baculovirus as biological control agent
- Case studies
- Questions / Discussion

Entomopathogenic bacteria:

• Bacillus thuringiensis

• Btk Kurstaki Lepidopteran-specific toxins

Bta Aizawai
Lepidopteran-specific toxins

• Bti Israelensis Dipteran-specific toxins (Vector-control)

• Btt Tenebrionis Coleopteran-specific toxin

Saccharopolyspora spinosa
Spinosad

• Lysinibacillus sphaericus Mosquito-control

Entomopathogenic nematodes

- Symbiotic relationship: nematode bacteria
- Broadly applied in horticulture and H&G
 - Lepidopteran larvae
 - Weevils, gnats, chafers

Entomopathogenic fungi

- Beauveria spp.
- Metarhizium spp.
- Lecanicillium spp.
- Isaria spp.
- Widely used in protected crops
- Specificity depending species (coevolutionary process)

Entomopathogenic virus

- Baculovirus
 - Granulovirus (GV)
 - Nucleopolyhedrovirus (NPV)

Andermatt Biocontrol at a glance

Providing good biological alternatives to replace chemical pesticides - for the production of safe food in a healthy environment!

- 30 years of experience in biocontrol
- Family- and employee owned
- World leader in baculovirus production
- Focus on quality & innovation
- ~25 Mio. turn-over
- ~100 employees

What is a baculovirus?

- Naturally occurring pathogen in insect populations
 - → GMO free
- Only found in insects (mainly lepidopteran species)
- Very host specific virus
 - no adverse effects on beneficial insects, on plants, mammals or aquatic organisms
- Safe for user and consumer (OECD Consensus Paper 2002)

Mode of Action of a baculovirus

Infection of the larvae

- At egg hatching
- During migration phase on the plant
- At penetration into the fruits

The larvae has to ingest the virus. A cutaneous infection is not possible.

Dose-Response relationship

Huber, BBA Darmstadt

Mode of action of Bt-Toxin and NPV

Transmission of baculoviruses

Toxicity of different active substances on beneficial organisms in fruit production

Maximal percent of population reduction per application

0% non-toxic

40% slightly toxic

Virus production in vivo

General application strategy for virus products

Application timing

targeted on eggs and against first instar larvae

Application rate

- Full rate every 8 days
- Half dosage every 6 days

Remarks

 cover the whole larval hatching period of the treated generation until harvest

Most relevant are right application timing and good coverage.

Summary Baculoviruses in IPM

- Naturally occurring viruses for inundative biological control of key pests
- Highly specific and efficient tool for IPM
- Challenges: UV-sensitivity, slow speed of kill, high production costs
- Population control: positioning at the beginning of the pest life cycle
- Highly compatible with other inputs and beneficials
- Residue free, safe for producers and consumers

Case study I: Invasion of Noth America by Lymantria dispar - European Gypsy moth

- Natural occurence: Europe, Mediterrean basin, Middle East, Asia
- Important forest pest, invading large areas in years of gradation, increasing tree mortality
- Health issue (allergenic reaction)
- First recorded in the US: 1869

Gypsy moth control in the USA

- Quarantine area (dark blue): Monitoring and control
 - => Suppression
- Barrier zone (grey-green): designed to delay spread and permanent establishment
 - => Eradication
 - Btk as first choice of control (Cost effectiveness)
 - GypCheck (LdMNPV) for environmentally sensitive areas

Case study II: Invasion of South America by Helicoverpa armigera- African cotton bollworm

- Natural occurence: Africa, Middle East, South East Asia
- HELIAR: very polyphagous, high fecundity, highly migratory, facultativ diapause
 - => High damage potential
- First recorded in Brasil: ~2010
 - Resistant to many commonly used insecticides
 - Invading monocultivations of soy (~60Mio. ha), corn and cotton

Helicovex on soybean (BRA) Example of an IPM program

Helicovex on soybean (BRA) Example of an IPM program

Case study III: Invasion of Israel by Thaumatotibia leucotreta – False Codling moth

- Natural occurence: Subsaharan Africa
- FCM: very polyphagous
 - Main host plants: Citrus, Table grapes, Avocados, Pomegranates, Capsicum
 - ⇒ High damage potential
- Quarantine pest in export destinations
- First recorded in Israel: 1986
 - Initially on Macadamia
 - Currently main pest on Pomegranate and Citrus

FCM control with CRYPTEX on citrus

- Apply at least 3 application of Cryptex per season
- Always focus on the first FCM generation to push down the population
- Final application 3-4 weeks before harvest can reduce the population at harvest period
- For optimal FCM control use Cryptex as standard element in a plant protection programme
- Can be combined with mating disruption
- Tank mixes with other pesticdes

Baculoviruses – Challenges and Chances

Virus biology

- Narrow host range
- Slow speed of kill
- Persistence / UV sensitivity

Production (in vivo)

- Labor intensive
- Consistent product quality

- ▶ Target key pests
- ▶ High value crops
- Export markets (residues)
- ► Resistance problems with conventional insecticides
- Reliable instructions
- Logistics and storage

- Proper timing
- Logistics and storage

Distributor

End user (farmer)

where Nature leads Innovation

Mortality of first instar larvae of *Adoxophyes* orana, fed with AoGV treated leaves

Decrease of the activity of AoGV depending on the exposition of the leaves after a summer application

Andermatt, 1988

